Ingeniería de diseño y simulación asistida por inteligencia artificial

Autores/as

  • Paola Gabriela Enríquez Yépez Centro de Educación Inicial Saint Nicolas
  • Washington Eduardo Lascano Tacuri Unidad educativa Pedro Fermín Cevallos https://orcid.org/0009-0004-8791-6923
  • Mayra Alejandra Lizano Jácome Universidad Politécnica Estatal del Carchi https://orcid.org/0009-0009-5816-5477
  • Jaime Marcelo Altamirano Hidalgo Unidad Educativa Pedro Fermín Cevallos

DOI:

https://doi.org/10.59282/reincisol.V3(6)2494-2521

Palabras clave:

Inteligencia artificial, ingeniería, diseño por ordenador, innovación, automatización.

Resumen

Este artículo de revisión examina el impacto de la Inteligencia Artificial (IA) en los procesos de ingeniería de diseño y simulación, enfatizando la transformación que ha generado la integración de tecnologías avanzadas en estos campos. El objetivo central del estudio es comprender cómo la IA ha influido en la manera en que se diseñan y optimizan productos y sistemas, acelerando los procesos y mejorando la calidad de los resultados. Para realizar este análisis, se utilizó la base de datos bibliográfica SCOPUS. Se establecieron criterios específicos, incluyendo la selección de documentos en español e inglés y la clasificación de los mismos en tipos "artículo" y "revisión", lo que resultó en la compilación de 4649 artículos académicos. Estos datos fueron analizados mediante el uso de RStudio y la aplicación Bibliometrix. El análisis revela que la IA no solo ha acelerado el proceso de ideación, sino que también ha permitido a los ingenieros explorar un espectro más amplio de posibilidades, facilitando la identificación de soluciones innovadoras y la optimización del desarrollo de productos y sistemas. Los avances en algoritmos de IA y su integración en herramientas de simulación han transformado la manera en que se abordan los desafíos en el diseño, permitiendo la creación de diseños más complejos y sofisticados en menos tiempo y con mayor precisión. Este enfoque no solo incrementa la eficiencia de los procesos, sino que también abre nuevas oportunidades para la innovación, fortaleciendo la capacidad de los profesionales para desarrollar soluciones que antes eran inalcanzables.  

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abbasi, M., Davis, M., Heredia, R., & Camacho, D. (2024). Artificial intelligence: a look back to the future in university EDUCATION. Proceedings of International Structural Engineering and Construction, 11(1). https://doi.org/10.14455/ISEC.2024.11(1).EPE-11

Aguilar, D., Borja, M., Cadena, E., Endara, S., Sánchez, D., Jiménez, D., Castillo, D., Álvarez, D., Troncoso, A., Izurieta, D., Veintimilla, S., Flores, M., Rueda, D., Gangotena, V., Sánchez, N., Aliatis, R., & Apolo, S. (2023). Inteligencia artificial en la educación médica: Contexto Latinoamericano. Metro Ciencia, 31(2), Article 2. https://doi.org/10.47464/MetroCiencia/vol31/2/2023/21-34

Akhtar, Z. (2024). Artificial intelligence (AI) within manufacturing: An investigative exploration for opportunities, challenges, future directions. Metaverse, 5, 2731. https://doi.org/10.54517/m.v5i2.2731

Álvarez, S., Salazar, O. M., Ovalle, D. A., Álvarez, S., Salazar, O. M., & Ovalle, D. A. (2020). Modelo de juego serio colaborativo basado en agentes inteligentes para apoyar procesos virtuales de aprendizaje. Formación universitaria, 13(5), 87-102. https://doi.org/10.4067/S0718-50062020000500087

Basáez, E., & Mora, J. (2022). Salud e inteligencia artificial: ¿cómo hemos evolucionado? Revista Médica Clínica Las Condes, 33(6), 556-561. https://doi.org/10.1016/j.rmclc.2022.11.003

Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., Dafoe, A., Scharre, P., Zeitzoff, T., Filar, B., Anderson, H., Roff, H., Allen, G. C., Steinhardt, J., Flynn, C., hÉigeartaigh, S. Ó., Beard, S., Belfield, H., Farquhar, S., … Amodei, D. (2018, febrero 20). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. arXiv.Org. https://arxiv.org/abs/1802.07228v1

Cedeño, H., Muñoz, Á., & Lourido, M. (2020). Uso de la inteligencia artificial en el diseño de interiores: Artículo de revisión bibliográfica. COGNIS: Revista Científica de Saberes y Transdisciplinariedad - ISSN: 2959-5703, 1(2), Article 2.

Chinda, F. (2023). The Impact of Artificial Intelligence on Engineering Innovations. International journal of applied research and technology, Vol. 12, No. 7, 22-28.

Coloma, J. A., Vargas, J. A., Sanaguano, C. A., & Geovanny, Á. (2020). Inteligencia artificial, sistemas inteligentes, agentes inteligentes. RECIMUNDO: Revista Científica de la Investigación y el Conocimiento, 4(2), 16-30. https://doi.org/10.26820/recimundo/4.(2).mayo.2020.16-30

Crawley, E. F., Malmqvist, J., Östlund, S., Brodeur, D. R., & Edström, K. (2014). Rethinking Engineering Education: The CDIO Approach. Springer International Publishing. https://doi.org/10.1007/978-3-319-05561-9

Dym, C., Little, P., & Orwin, E. (2013). Engineering Design: A Project-Based Introduction. John Wiley & Sons.

Friedrich, S., Schreibauer, M., & Buss, M. (2019). Least-squares policy iteration algorithms for robotics: Online, continuous, and automatic. Engineering Applications of Artificial Intelligence, 83, 72-84. https://doi.org/10.1016/j.engappai.2019.04.001

García, F. J., Llorens, F., & Vidal, J. (2024). La nueva realidad de la educación ante los avances de la inteligencia artificial generativa. RIED-Revista Iberoamericana de Educación a Distancia, 27(1). https://doi.org/10.5944/ried.27.1.37716

Gomes, J. (2022). The impact of artificial intelligence in the rail industry [masterThesis]. https://repositorio.iscte-iul.pt/handle/10071/25014

Grieves, M. (2015). Digital Twin: Manufacturing Excellence through Virtual Factory Replication.

Hidalgo, C., Llanos, J., & Bucheli, V. (2021). Una revisión sistemática sobre aula invertida y aprendizaje colaborativo apoyados en inteligencia artificial para el aprendizaje de programación. Tecnura, 25(69), 196-214. https://doi.org/10.14483/22487638.16934

Mendoza, J. G., Quispe, M. B., Muñoz, S. P., Mendoza, J. G., Quispe, M. B., & Muñoz, S. P. (2022). Una revisión sobre el rol de la inteligencia artificial en la industria de la construcción. Ingeniería y competitividad, 24(2). https://doi.org/10.25100/iyc.v24i2.11727

Ocaña, Y., Valenzuela, L., & Garro, L. (2019). Inteligencia artificial y sus implicaciones en la educación superior. Propósitos y Representaciones, 7(2), 536-568. https://doi.org/10.20511/pyr2019.v7n2.274

Rafael, W. F., Vilcherres, P., Muñoz, S., Tuesta, V., & Mejía, H. (2022). Modelamiento de procesos hidrológicos aplicando técnicas de inteligencia artificial: Una revisión sistemática de la literatura. Iteckne, 19(1), 46-60. https://doi.org/10.15332/iteckne.v19i1.2645

Ramírez, A. (2019). Futuro sonoro. Aproximación teórica emergente transdisciplinar al futuro de la música a partir de la aplicación de inteligencia artificial evolutiva hacia nuevos campos sonoros de creación abierta en el marco de las ciencias de la complejidad. Repositorio Institucional de la Universidad Pedagógica Nacional. http://hdl.handle.net/20.500.12209/9490.

Regenwetter, L., Nobari, A., & Ahmed, F. (2022). Deep Generative Models in Engineering Design: A Review. Journal of Mechanical Design, 144(071704). https://doi.org/10.1115/1.4053859

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. (2022). Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. Journal of Open Innovation Technology Market and Complexity, 8, 45. https://doi.org/10.3390/joitmc8010045

Santos, K., Pilamunga, E., Villarreal, D., & Ortiz, L. (2023). Integración de tecnologías emergentes en el diseño industrial para una gestión más eficiente del transporte y la logística. Polo del Conocimiento: Revista científico - profesional, 8(9 (SEPTIEMBRE 2023)), 1204-1218.

Soto, J. Á. (2023). La ‘velocidad de escape’ de la IA y el futuro del trabajo. Nuevas Tendencias, 110, 37-39. https://revistas.unav.edu/index.php/nuevas-tendencias/article/view/45027

Thakur, A., Soklaridis, S., Crawford, A., Mulsant, B., & Sockalingam, S. (2021). Using Rapid Design Thinking to Overcome COVID-19 Challenges in Medical Education. Academic Medicine, 96(1), 56. https://doi.org/10.1097/ACM.0000000000003718

Tobar, R., Gao, Y., Mas, J. F., & Cambrón-Sandoval, V. H. (2023). Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: Revisión bibliográfica. Revista de Teledetección, 62, 1-19. https://doi.org/10.4995/raet.2023.19014

Ulrich, K., Eppinger, S., & Yang, M. (2019). Product Design and Development. https://www.mheducation.com/highered/product/product-design-development-ulrich-eppinger/M9781260043655.html

Valdez, A., Aréchiga, D., & Daza Marco, T. (2024). Inteligencia artificial y su uso en las campañas electorales en sistemas democráticos. Revista Venezolana de Gerencia, 29(105), 63-76. https://doi.org/10.52080/rvgluz.29.105.5

Vázquez, M. L., Jara, R. E., Riofrio, C. E., & Teruel, K. P. (2018). Facebook como herramienta para el aprendizaje colaborativo de la inteligencia artificial. Didáctica y Educación ISSN 2224-2643, 9(1), Article 1.

Vélez, L. G. (2021). Inteligencia artificial y desempleo. Revista Científica Multidisciplinaria HEXACIENCIAS. ISSN: 3028-8657, 1(2), Article 2.

Vlah, D., Kastrin, A., Povh, J., & Vukašinović, N. (2022). Data-driven engineering design: A systematic review using scientometric approach. Advanced Engineering Informatics, 54. https://doi.org/10.1016/j.aei.2022.101774

Descargas

Publicado

2024-09-15

Cómo citar

Enríquez Yépez, P. G. ., Lascano Tacuri, W. E. ., Lizano Jácome, M. A. ., & Altamirano Hidalgo, J. M. . (2024). Ingeniería de diseño y simulación asistida por inteligencia artificial. Reincisol., 3(6), 2494–2521. https://doi.org/10.59282/reincisol.V3(6)2494-2521

Número

Sección

Artículos Cientificos
Bookmark and Share

10.59282

reincisol