La mente digital: un análisis del impacto psicosocial de la inteligencia artificial en los estudiantes del siglo XXI

Autores/as

  • María del Carmen Jardón Gallegos Universidad Virtual del Estado de Guanajuato https://orcid.org/0000-0001-8033-0592
  • Andrea Cristina García Pilataxi Instituto Superior Tecnológico Tena
  • Maritza Brigith Constante Toscano Universidad Regional Amazónica Ikiam
  • Angelica Janeth Mallitasig Sangucho Escuela de Educación Básica Naciones Unidas

DOI:

https://doi.org/10.59282/reincisol.V3(6)2038-2069

Palabras clave:

Mente digital; Inteligencia artificial; Psicología; Psicosocial; Humanos.

Resumen

Este estudio aborda el impacto psicosocial de la inteligencia artificial (IA) en los estudiantes del siglo XXI, un tema de creciente importancia en el contexto educativo contemporáneo. Con la integración de tecnologías digitales en los entornos educativos, es crucial comprender cómo estas herramientas afectan el bienestar emocional, las relaciones sociales y la identidad de los estudiantes. El objetivo de esta investigación es analizar estos efectos a través de una revisión exhaustiva de la literatura existente y proporcionar recomendaciones para un uso responsable y ético de la IA en la educación.

La metodología fue una revisión sistemática de 85 artículos académicos indexados en Scopus, seleccionando estudios relevantes que exploran el impacto psicosocial de la IA en el aprendizaje, la salud mental y las interacciones sociales de los estudiantes. A través de un análisis crítico de los hallazgos de la literatura hechos en RStudio, se identificaron patrones y tendencias significativas que reflejan tanto los beneficios como los desafíos asociados con la integración de la IA en el ámbito educativo.

 

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Abou Hashish, E. A., & Alnajjar, H. (2024). Digital proficiency: Assessing knowledge, attitudes, and skills in digital transformation, health literacy, and artificial intelligence among university nursing students. En BMC Medical Education (Vol. 24, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s12909-024-05482-3

Acosta-Enriquez, B. G., Arbulú Ballesteros, M. A., Huamaní Jordan, O., López Roca, C., & Saavedra Tirado, K. (2024). Analysis of college students’ attitudes toward the use of ChatGPT in their academic activities: Effect of intent to use, verification of information and responsible use. En BMC Psychology (Vol. 12, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s40359-024-01764-z

Atmini, S., Jusoh, R., Prastiwi, A., Wahyudi, S. T., Hardanti, K. N., & Widiarti, N. N. (2024). Plagiarism among accounting and business postgraduate students: A fraud diamond framework moderated by understanding of artificial intelligence. En Cogent Education (Vol. 11, Número 1). Taylor and Francis Ltd. https://doi.org/10.1080/2331186X.2024.2375077

Aydınlar, A., Mavi, A., Kütükçü, E., Kırımlı, E. E., Alış, D., Akın, A., & Altıntaş, L. (2024). Awareness and level of digital literacy among students receiving health-based education. En BMC Medical Education (Vol. 24, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s12909-024-05025-w

Baillifard, A., Gabella, M., Lavenex, P. B., & Martarelli, C. S. (2024). Effective learning with a personal AI tutor: A case study. En Education and Information Technologies. Springer. https://doi.org/10.1007/s10639-024-12888-5

Basu, S., & Basu, M. (2021). Modified Student Psychology Based Optimization Algorithm for Economic Dispatch Problems. En Applied Artificial Intelligence (Vol. 35, Número 15, pp. 1508-1528). Taylor and Francis Ltd. https://doi.org/10.1080/08839514.2021.1985050

Benzinger, L., Epping, J., Ursin, F., & Salloch, S. (2024). Artificial Intelligence to support ethical decision-making for incapacitated patients: A survey among German anesthesiologists and internists. En BMC Medical Ethics (Vol. 25, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s12910-024-01079-z

Bittencourt, I. I., Chalco, G., Santos, J., Fernandes, S., Silva, J., Batista, N., Hutz, C., & Isotani, S. (2023). Positive Artificial Intelligence in Education (P-AIED): A Roadmap. En International Journal of Artificial Intelligence in Education. Springer. https://doi.org/10.1007/s40593-023-00357-y

Chen, M., Bian, K., He, Y., Li, Z., & Zheng, H. (2023). Enhanced Learning and Forgetting Behavior for Contextual Knowledge Tracing. En Information (Switzerland) (Vol. 14, Número 3). MDPI. https://doi.org/10.3390/info14030168

Duah, J. E., & McGivern, P. (2024). How generative artificial intelligence has blurred notions of authorial identity and academic norms in higher education, necessitating clear university usage policies. En International Journal of Information and Learning Technology (Vol. 41, Número 2, pp. 180-193). Emerald Publishing. https://doi.org/10.1108/IJILT-11-2023-0213

Gado, S., Kempen, R., Lingelbach, K., & Bipp, T. (2022). Artificial intelligence in psychology: How can we enable psychology students to accept and use artificial intelligence? En Psychology Learning and Teaching (Vol. 21, Número 1, pp. 37-56). SAGE Publications Inc. https://doi.org/10.1177/14757257211037149

Ghafouri, M. (2024). ChatGPT: The catalyst for teacher-student rapport and grit development in L2 class. En System (Vol. 120). Elsevier Ltd. https://doi.org/10.1016/j.system.2023.103209

Han, L., & Gong, J. (2022). A Study on Exploring the Path of Psychology and Civics Teaching Reform in Universities Based on Artificial Intelligence. En Computational Intelligence and Neuroscience (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/4841387

Jyothy, S. N., Kolil, V. K., Raman, R., & Achuthan, K. (2024). Exploring large language models as an integrated tool for learning, teaching, and research through the Fogg Behavior Model: A comprehensive mixed-methods analysis. En Cogent Engineering (Vol. 11, Número 1). Cogent OA. https://doi.org/10.1080/23311916.2024.2353494

Kathirisetty, N., Jadeja, R., Thakkar, H. K., Garg, D., Chang, C.-C., Mahadeva, R., & Patole, S. P. (2023). Student Placement Probabilistic Assessment Using Emotional Quotient With Machine Learning: A Conceptual Case Study. En IEEE Access (Vol. 11, pp. 125716-125737). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2023.3330320

Kleine, A.-K., Kokje, E., Lermer, E., & Gaube, S. (2023). Attitudes Toward the Adoption of 2 Artificial Intelligence-Enabled Mental Health Tools Among Prospective Psychotherapists: Cross-sectional Study. En JMIR Human Factors (Vol. 10). JMIR Publications Inc. https://doi.org/10.2196/46859

Lajoie, S. P. (2021). Student Modeling for Individuals and Groups: The BioWorld and HOWARD Platforms. En International Journal of Artificial Intelligence in Education (Vol. 31, Número 3, pp. 460-475). Springer. https://doi.org/10.1007/s40593-020-00219-x

Li, P., & Liang, F. (2022). An Assessment and Analysis Model of Psychological Health of College Students Based on Convolutional Neural Networks. En Computational Intelligence and Neuroscience (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/7586918

Liu, B., Wei, L., Wu, M., & Luo, T. (2023). Speech production under uncertainty: How do job applicants experience and communicate with an AI interviewer? En Journal of Computer-Mediated Communication (Vol. 28, Número 4). Oxford University Press. https://doi.org/10.1093/jcmc/zmad028

Martínez-Ramón, J.-P., & Gil, M. (2023). Do artificial neural networks dream of understanding sentence comprehension? A preliminary study (¿Sueñan las redes neuronales artificiales con entender la comprensión de frases? Un estudio preliminar). En Estudios de Psicologia (Vol. 44, Números 2-3, pp. 407-432). Taylor and Francis Ltd. https://doi.org/10.1080/02109395.2023.2251817

Ongoro, C. A., & Fanjiang, Y.-Y. (2024). Digital Game-Based Technology for English Language Learning in Preschools and Primary Schools: A Systematic Analysis. En IEEE Transactions on Learning Technologies (Vol. 17, pp. 202-228). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/TLT.2023.3268282

Reed, J. M., & Dodson, T. M. (2024). Generative AI Backstories for Simulation Preparation. En Nurse Educator (Vol. 49, Número 4, pp. 184-188). Lippincott Williams and Wilkins. https://doi.org/10.1097/NNE.0000000000001590

Røed, R. K., Baugerud, G. A., Hassan, S. Z., Sabet, S. S., Salehi, P., Powell, M. B., Riegler, M. A., Halvorsen, P., & Johnson, M. S. (2023). Enhancing questioning skills through child avatar chatbot training with feedback. En Frontiers in Psychology (Vol. 14). Frontiers Media SA. https://doi.org/10.3389/fpsyg.2023.1198235

Saravia-Rojas, M. Á., Camarena-Fonseca, A. R., León-Manco, R., & Geng-Vivanco, R. (2024). Artificial intelligence: ChatGPT as a disruptive didactic strategy in dental education. En Journal of Dental Education (Vol. 88, Número 6, pp. 872-876). John Wiley and Sons Inc. https://doi.org/10.1002/jdd.13485

Shen, Y., & Sun, S. (2022). Design of International Chinese Education Promotion Platform Based on Artificial Intelligence and Facial Recognition Technology. En Computational Intelligence and Neuroscience (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/6424984

Srivastava, A., Dasgupta, S. A., Ray, A., Bala, P. K., & Chakraborty, S. (2021). Relationships between the “Big Five” personality types and consumer attitudes in Indian students toward augmented reality advertising. En Aslib Journal of Information Management (Vol. 73, Número 6, pp. 967-991). Emerald Group Holdings Ltd. https://doi.org/10.1108/AJIM-02-2021-0046

Sufyan, N. S., Fadhel, F. H., Alkhathami, S. S., & Mukhadi, J. Y. A. (2024). Artificial intelligence and social intelligence: Preliminary comparison study between AI models and psychologists. En Frontiers in Psychology (Vol. 15). Frontiers Media SA. https://doi.org/10.3389/fpsyg.2024.1353022

Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. En Electronic Journal of e-Learning (Vol. 20, Número 5, pp. 639-653). Academic Conferences and Publishing International Limited. https://doi.org/10.34190/ejel.20.5.2597

Wei, X., Sun, S., Wu, D., & Zhou, L. (2021). Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology. En Frontiers in Psychology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2021.767837

Wu, M., Huang, X., Jiang, B., Li, Z., Zhang, Y., & Gao, B. (2024). AI in medical education: The moderating role of the chilling effect and STARA awareness. En BMC Medical Education (Vol. 24, Número 1). BioMed Central Ltd. https://doi.org/10.1186/s12909-024-05627-4

Xu, C., & Zhang, Z. (2021). The Effect of Law Students in Entrepreneurial Psychology Under the Artificial Intelligence Technology. En Frontiers in Psychology (Vol. 12). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2021.731713

Zhang, X. (2022). Application of Artificial Intelligence in Academic Mental Health and Employment Evaluation. En International Journal of Information Systems in the Service Sector (Vol. 14, Número 3). IGI Global. https://doi.org/10.4018/IJISSS.311861

Zhi, R., & Wang, Y. (2024). On the relationship between EFL students’ attitudes toward artificial intelligence, teachers’ immediacy and teacher-student rapport, and their willingness to communicate. En System (Vol. 124). Elsevier Ltd. https://doi.org/10.1016/j.system.2024.103341

Descargas

Publicado

2024-08-30

Cómo citar

Jardón Gallegos, M. del C. ., García Pilataxi, A. C. ., Constante Toscano, M. B., & Mallitasig Sangucho , A. J. . (2024). La mente digital: un análisis del impacto psicosocial de la inteligencia artificial en los estudiantes del siglo XXI. Reincisol., 3(6), 2038–2069. https://doi.org/10.59282/reincisol.V3(6)2038-2069

Número

Sección

Artículos Cientificos
Bookmark and Share

Artículos más leídos del mismo autor/a

10.59282

reincisol