Exploring Data Mining in Higher Education Management: Challenges and Opportunities in the Digital Age
DOI:
https://doi.org/10.59282/reincisol.V3(5)1367-1385Keywords:
Data mining, higher education management, digital age.Abstract
The present study addresses the theme of data mining in higher education management, specifically focusing on the challenges and opportunities in the digital age. It involves analyzing large educational datasets to discover patterns, trends, and insights that can be used to enhance decision-making and academic performance in institutions of higher education. The study aims to demonstrate the importance of data mining in higher education management for decision-making and actions by academic stakeholders. The methodology includes a comprehensive literature review by collecting and analyzing relevant information from scientific articles and academic studies available in databases such as Google Scholar. It is concluded that effective higher education management requires informed decisions, with data mining playing a key role. This technique analyzes academic data to improve educational processes and practices, identifying patterns in performance, student behavior, and attrition for problem-solving. Integrating data mining in management predicts and addresses issues like teaching performance and curriculum design, contributing to the development of competent, ethical professionals and enhancing overall educational quality and societal impact.
Downloads
Metrics
References
Cedillo, P., Insfran, E., Abrahao, S., & Vanderdontckt, J. (2021). Empirical Evaluation of a Method for Monitoring Cloud Services Based on Models at Runtime. IEEE Access, 55898-55919. doi:DOI 10.1109/ACCESS.2021.3071417
Cleary, S., & McLarney, C. (2021). How Logistics is evolving: Why it is appropriate for today and the next decade. The IUP Journal of Supply Chain Management, Vol. XVIII, No. 1, 2021.
Chancusig Chisag, J. C. (2017). Didácticos interactivos a través de las TIC´S en el proceso de enseñanza matemática. Boletin Virtual, 6(4), 112–133. . Obtenido de https://dialnet.unirioja.es/descarga/articulo/6119349.pdf
De la Plata Charles Edisson Escobar Terán, H. E. E. T. M. A. S. C. M. (Ed.). (2017). Implementación de minería de datos en la gestión académica de las instituciones de educación superior (Vol. 8, Número ISSN 2224-2643). Didasc@lia: Didáctica y Educación.
EDUTEC. (2020). Mirando al futuro de la Tecnología Educativa. Revista Electrónica de Tecnología Educativa.
Murad, S. A., Md Muzahid, A., Azmi, Z., Hoque, M., & Kowsher, M. (2022). A review on job scheduling technique in cloud computing and priority rule based intelligent framework. Revista de la Universidad King Saud - Informática y Ciencias de la Información, 2309-2331. doi:https://doi.org/10.1016/j.jksuci.2022.03.027
Paredes, G. J., Moscoso, Z., Saa, P., Sandoval, F., & Rodas, P. (2017). Unified Cloud Computing Adoption Framework. 2017 International Conference on Information Systems and Computer Science, (pág. 2017). Quito. doi:10.1109/INCISCOS.2017.58
Edwards A. L. (1976). Introduction to Linear Regression and Correlation. San Francisco, EEUU: W. H. Freeman & Co. LTD,
Hosmer, D.W., Stanley, L. (2000). Applied Logistic Regression. New Jersey, EE.UU: John Wiley & Sons, Inc.
Dempster, A.P, Laird, N.M & Rubin, D. (1977). Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1), 1–38.
Zhang, H. (2004). The Optimality of Naive Bayes. In Z. Barr, V., Markov (Eds.), Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference.
Eiben, A. E., Smith, J. . (2003). Introduction to Evolutionary Computing [versión Ebook]. Recuperado de http://cslt.riit.tsinghua.edu.cn/mediawiki/images/e/e8/Introduction_to_Evolution ar y_Computing.pdf
Agrawal, R., Imieliński, T., Swami, A. (1993). Mining association rules between sets of items in large databases. In Acm sigmod record, 22(2), 207-216.
Scheffer, T. (2004). Finding Association Rules that Trade Support Optimally Against Confidence. Intell. Data Anal., 9(4), 381–395.
Quinlan, J R. (2007). Induction of Decision Trees. Machine learning, 1(1), 81–106
Ye, P., Baldwin, T. (2006). Semantic Role Labelling of Prepositional Phrases. ACM Transactions on Asian Language Information Processing (TALIP), 5(3), 228- 244.
Quinlan, J.R. (1993). C4.5 : Programs for Machine Learning. San Francisco, USA Morgan Kaufmann Publishers Inc
Kohonen, T. (1988). Self-organized formation of topologically correct feature maps. En E. Anderson, J.A. Rosenfeld (Eds.), Neurocomputing: foundations of research (pp. 509–521). Berlin, Alemania: Springer-Verlag.
Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986). Learning internal representations by error propagation. En J. L. Rumelhart, David E. and McClelland (Eds.), Parallel distributed processing: explorations in the microstructure of cognition (pp. 318–362). MA, USA: MIT Press Cambridge
Macqueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. En Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281–297.
Fisher, S., & Hood, B. (1987). The Stress of Transition to University: A Longitudinal Study of Psychological Disturbance, Absent-Mindedness, and Vulnerability to Homesickness. British Journal of Psychology, 78, 425-441. http://dx.doi.org/10.1111/j.2044-8295.1987.tb02260.x
Quirumbay, Y. D., Castillo, Y. C., & Coronel, S. I. (2022). Una revisión del aprendizaje profundo aplicado a laciberseguridad. Revista Científica y Tecnológica UPSE, 57-65. doi:http://dx.doi.org/10.26423/rctu.v9i1.671
Baker, R. S., Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. JEDM-Journal of Educational Data Mining.
Flores Lagla, G., Cadena Moreano, J., Quinatoa Arequipa, E., & Villa Quishpe, M. (2019). Minería de datos como herramienta estratégica. RECIMUNDO, 3(1), 955-970. Obtenido de https://www.recimundo.com/index.php/es/article/view/400
Villarreal, J., Mestre, U., y Llanes. L. (2011). La atención a las diferencias individuales, en aulas inclusivas, como vía para el aprendizaje desarrollador de las matemáticas en la educación básica y media en Colombia. Didasc@lia: Didáctica y Educación
Zapata González, A., Manuel, D., Prieto Méndez, E., Cristóbal, D., & Morales, R. (s/f). Uco.es. Febrero 2013, de http://www.uco.es/grupos/kdis/docs/thesis/2013-AZapata.pdf
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Josselyn Maoly Cedillo Arce, Holguer Miguel Beltrán Abreo, Marjorie Irene Saltos Arce , Fernando Renato Soriano Barzola
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.