Applications of the Taylor polynomial in solving indeterminate limits.

Authors

  • Sting Brayan Luna-Fox Universidad Estatal Amazónica
  • Javier Alfonso Caiza Falconí Universidad Estatal Amazónica https://orcid.org/0009-0003-5368-9032
  • María del Carmen Castelo Naveda Universidad Estatal Amazónica https://orcid.org/0000-0002-3629-881X
  • Luis Alberto Uvidia Armijo Universidad Estatal Amazónica

DOI:

https://doi.org/10.59282/reincisol.V3(5)469-481

Keywords:

Convergence; functions; numerical series.

Abstract

In this research, the use of the Taylor polynomial as a tool for solving indeterminate limits in mathematical analysis was explored. The importance of solving limits was highlighted and how the Taylor polynomial offers a precise alternative to address the complexity of indeterminate limits. The detailed methodology included the mathematical definition of the Taylor polynomial, the selection of specific exercises and the step-by-step resolution of each one. The results demonstrated the effectiveness of the Taylor polynomial in providing accurate approximations of the functions at the relevant points, allowing direct evaluation of the limits with consistent results. The discussion highlighted the usefulness and limitations of this technique, identifying areas for future research. In conclusion, this research highlights the value of the Taylor polynomial as a powerful tool in solving indeterminate limits, contributing to the advancement of knowledge in mathematical analysis.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abbaszadeh, M., Dehghan, M., & Azis, M. I. (2021). The meshless local Petrov–Galerkin method based on moving Taylor polynomial approximation to investigate unsteady diffusion–convection problems of anisotropic functionally graded materials related to incompressible flow. Engineering Analysis with Boundary Elements, 132, 469–480. https://doi.org/10.1016/J.ENGANABOUND.2021.06.026

Alves, A. (2023). Bernoulli approximation to sine and cosine functions. International Journal of Mathematical Education in Science and Technology, 54(5), 924–942. https://doi.org/10.1080/0020739X.2022.2069053

Bakas, N. (2024). Taylor Polynomials in a High Arithmetic Precision as Universal Approximators. Computation, 12(3), 53. https://doi.org/10.3390/computation12030053

Bottazzi, G. (2023). Differential Calculus of Functions of One Variable. Advanced Calculus for Economics and Finance, 21(2), 125–153. https://doi.org/10.1007/978-3-031-30316-6_6

Campo-Meneses, K., & García-García, J. (2020). Explorando las conexiones matemáticas asociadas a la función exponencial y logarítmica en estudiantes universitarios colombianos. Educación Matemática, 32(3), 209–240. https://doi.org/10.24844/EM3203.08

Domecq, N., Berenguer, I., & Gorina-Sánchez, A. (2019). Didáctico para su concreción interdisciplinarity in the teaching-learning of the differential and integral calculus. a didactic instrument for its concretion. Revista Magazine de Las Ciencias, 4(1), 1–17. http://orcid.org/0000-0001-8752-885X

Galindo Illanes, M., & Breda, A. (2023). Significados de la derivada en los libros de texto de las carreras de Ingeniería Comercial en Chile. Boletim de Educação Matemática, 37(75), 271–295. https://doi.org/10.1590/1980-4415V37N75A13

González-Flores, Y., Montoro-Medina, A., & Ruiz-Hidalgo, J. (2021). Análisis de las definiciones de límite que brindan estudiantes universitarios. Uniciencia, 35(2), 271–290. https://doi.org/10.15359/RU.35-2.18

He, J. H., & Ji, F. Y. (2019). Taylor series solution for Lane–Emden equation. Journal of Mathematical Chemistry, 57(8), 1932–1939. https://doi.org/10.1007/S10910-019-01048-7/METRICS

Holey, T., & Wiedemann, A. (2023). Differential Calculus. Analysis and Linear Algebra, 22(65), 89–134. https://doi.org/10.1007/978-3-662-66247-2_3

Howard, R. M. (2019). Dual Taylor Series, Spline Based Function and Integral Approximation and Applications. Mathematical and Computational Applications 2019, Vol. 24, Page 35, 24(2), 35. https://doi.org/10.3390/MCA24020035

Pan, L. Y. (2023). The Application of Taylor formula in Limits and Approximation. Highlights in Science, Engineering and Technology, 72, 891–898. https://doi.org/10.54097/A2NZCD87

Pérez-González, F. J. (2008). Cálculo diferencial e integral de funciones de una variable. moz-extension://14d71c70-8007-4614-91c9-93b5cc3f52fb/enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.ugr.es%2F~fjperez%2Ftextos%2Fcalculo_diferencial_integral_func_una_var.pdf

Pineda, D., Miranda, I., Hernández-Ochandía, D., Rodríguez, M. G., & Holgado, R. (2019). Software para el cálculo del límite de tolerancia a Meloidogyne spp. en cultivos de importancia económica. Revista de Protección Vegetal, 36(3). https://eqrcode.co/a/hsQrsm

Portet, S. (2020). A primer on model selection using the Akaike Information Criterion. Infectious Disease Modelling, 5, 111–128. https://doi.org/10.1016/J.IDM.2019.12.010

Sastre, J., Ibáñez, J., Alonso-Jordá, P., Peinado, J., & Defez, E. (2019). Fast Taylor polynomial evaluation for the computation of the matrix cosine. Journal of Computational and Applied Mathematics, 354, 641–650. https://doi.org/10.1016/J.CAM.2018.12.041

Sun, M. (2023). Evaluation of Limits Involving Trigonometric Functions by L’ Hospital Rule. Highlights in Science, Engineering and Technology, 49, 315–319. https://doi.org/10.54097/HSET.V49I.8524

Tarasov, V. (2019). On History of Mathematical Economics: Application of Fractional Calculus. Mathematics, 7(6). https://doi.org/10.3390/MATH7060509

Xiong, X., & Zhang, Z. (2023). Asymptotic synchronization of conformable fractional-order neural networks by L’ Hopital’s rule. Chaos, Solitons & Fractals, 173, 113665. https://doi.org/10.1016/J.CHAOS.2023.113665

Published

2024-04-26

How to Cite

Luna-Fox, S. B., Caiza Falconí, J. A., Castelo Naveda, M. del C., & Uvidia Armijo , L. A. (2024). Applications of the Taylor polynomial in solving indeterminate limits. REINCISOL, 3(5), 469–481. https://doi.org/10.59282/reincisol.V3(5)469-481
Bookmark and Share

10.59282

reincisol